Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 18(12): e2100516, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609783

RESUMO

Bacterial endophytes are known to protect Vitis vinifera L. against various harmful effects of the environment and support its growth. However, for the most part, biochemical responses of such co-existence have not yet been fully elucidated. In this work, we aimed to characterize the activities of endophytic consortia in a plant-endophyte extract by measuring five indicators of colonization (overall endophyte metabolic activity, microbial ACC deaminase activity, ability to solubilize phosphorus, ability to convert atmospheric nitrogen to ammonia ions, and ability to produce growth promoting indole acetic acid), and find relationships between these activities and metabolome. The V. vinifera canes for the metabolomics fingerprinting were extracted successively with water and methanol, and analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. For data processing, the MS-DIAL - MS-CleanR - MS-FINDER software platform was used, and the data matrix was processed by PCA and PLS-DA multivariate statistical methods. The metabolites that were upregulated with the heavy endophyte colonization were mainly chlorins, phenolics, flavonoid and terpenoid glycosides, tannins, dihydropyranones, sesquiterpene lactones, and long-chain unsaturated fatty acids.


Assuntos
Endófitos/metabolismo , Metabolômica , Vitis/química , Bacillaceae/metabolismo , Enterobacteriaceae/metabolismo , Micrococcaceae/metabolismo , Pseudomonadaceae/metabolismo , Vitis/metabolismo
2.
Plants (Basel) ; 9(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664494

RESUMO

Magnolia plants are used both as food supplements and as cosmetic and medicinal products. The objectives of this work consisted of preparing extracts from leaves and flowers of eight Magnolia plants, and of determining concentrations of magnolol (1 to 100 mg·g-1), honokiol (0.11 to 250 mg·g-1), and obovatol (0.09 to 650 mg·g-1), typical neolignans for the genus Magnolia, in extracts made by using a methanol/water (80/20) mixture. The tested Magnolia plants, over sixty years old, were obtained from Pruhonický Park (Prague area, Czech Republic): M. tripetala MTR 1531, M. obovata MOB 1511, and six hybrid plants Magnolia × pruhoniciana, results of a crossbreeding of M. tripetala MTR 1531 with M. obovata MOB 1511. The identification of neolignans was performed by HRMS after a reversed-phase high-performance liquid chromatography (RP-HPLC) fractionation of an extract from M. tripetala MTR 1531. The highest concentrations of neolignans were found in the flowers, most often in their reproductive parts, and obovatol was the most abundant in every tested plant. The highest concentrations of neolignans were detected in parent plants, and lower concentrations in hybrid magnolias. Flower extracts from the parent plants M. tripetala MTR 1531 and M. obovata MOB 1511, flower extracts from the hybrid plants Magnolia × pruhoniciana MPR 0271, MPR 0151, and MPR 1531, and leaf extract from the hybrid plant Magnolia × pruhoniciana MPR 0271 inhibited growth of Staphylococcus aureus.

4.
Sci Rep ; 7: 43912, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272482

RESUMO

Biochar (BC) was characterized as a new carbonaceous material for the adsorption of toluene from water. The tested BC was produced from pine wood gasification, and its sorption ability was compared with that of more common carbonaceous materials such as activated carbon (AC). Both materials were characterized in terms of textural features and sorption abilities by kinetic and equilibrium tests. AC and BC showed high toluene removal from water. Kinetic tests demonstrated that BC is characterized by faster toluene removal than AC is. Textural features demonstrated that the porosity of AC is double that of BC. Nevertheless, equilibrium tests demonstrated that the sorption ability of BC is comparable with that of AC, so the materials' porosity is not the only parameter that drives toluene adsorption. The specific adsorption ability (mg sorbed m-2 of surface) of the BC is higher than that of AC: toluene is more highly sorbed onto the biochar surface. Biochar is furthermore obtained from biomaterial thermally treated for making energy; this also makes the use of BC economically and environmentally convenient compared with AC, which, as a manufactured material, must be obtained in selected conditions for this type of application.

5.
PLoS One ; 11(12): e0167927, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930707

RESUMO

Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.


Assuntos
Biodegradação Ambiental , Engenharia Genética/métodos , Metais Pesados/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Bifenilos Policlorados/metabolismo , Regiões Promotoras Genéticas , Poluentes do Solo/metabolismo , Urtica dioica/metabolismo , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Chumbo/metabolismo , Metais Pesados/análise , Plantas Geneticamente Modificadas/genética , Bifenilos Policlorados/análise , Regiões Promotoras Genéticas/genética , Solo/química , Urtica dioica/genética , Zinco/metabolismo
6.
Front Microbiol ; 6: 1268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635740

RESUMO

Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.

7.
N Biotechnol ; 32(1): 26-31, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25094051

RESUMO

Degradation of selected organochlorinated pesticides (γ-hexachlorocyclohexane - γ-HCH, dichlorodiphenyltrichloroethane - DDT, hexachlorobenzene - HCB) by soil microorganisms was studied. Bacterial strains isolated from contaminated soil from Klatovy-Luby, Hajek and Neratovice, Czech Republic, capable of growth on the selected pesticides were isolated and characterised. These isolates were subjected to characterisation and identification by MS MALDI-TOF of whole cells and sequence analysis of 16S rRNA genes. The isolates were screened by gas chromatography for their ability to degrade the selected pesticides. Some isolates were able to degrade pesticides, and the formation of degradation products (γ-pentachlorocyclohexane (γ-PCCH), dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) observed in liquid culture confirmed their degradation capability. The isolates and DNA samples isolated from the contaminated soil were also screened for the bphA1 gene (encoding biphenyl-2,3-dioxygenase, the first enzyme in the PCB degradation pathway) and its occurrence was demonstrated. The isolates were also screened for the presence of linA, encoding dehydrochlorinase, the first enzyme of the HCH degradation pathway. The linA gene could not be found in any of the tested isolates, possibly due to the high specificity of the primers used. The isolates with the most effective degradation abilities could be used for further in situ bioremediation experiments with contaminated soil.


Assuntos
Bactérias/isolamento & purificação , Hidrocarbonetos Clorados/metabolismo , Praguicidas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodegradação Ambiental/efeitos dos fármacos , Cromatografia Gasosa , DNA Bacteriano/genética , Eletroforese em Gel de Ágar , Genes Bacterianos , Viabilidade Microbiana/efeitos dos fármacos , Praguicidas/toxicidade , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Int J Phytoremediation ; 16(7-12): 937-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933894

RESUMO

Genetically modified plants can serve as an efficient tool for remediation of diverse dangerous pollutants of the environment such as pesticides, heavy metals, explosives and persistent organic compounds. Transgenic lines of Nicotiana tabacum containing bacterial bphC gene from the degradation pathway of polychlorinated biphenyls (PCBs) were tested. The product of the bphC gene - enzyme 2,3-dihydroxybiphenyl-1,2-dioxygenase is responsible for cleaving of the biphenyl ring. The presence of bphC gene in transgenic plants was detected on DNA, RNA and protein level. The expression of the bphC/His gene was verified afterpurification of the enzyme from plants by affinity chromatography followed by a Western blot and immunochemical assay. The enzyme activity of isolated protein was detected. Efficient transformation of 2,3-DHB by transgenic plants was achieved and the lines also exhibited high production of biomass. The transgenic plants were more tolerant to the commercial PCBs mixture Delor 103 than non-transgenic tobacco. And finally, the higher decrease of total PCB content and especially congener 28 in real contaminated soil from a dumpsite was determined after cultivation of transgenic plant in comparison with nontransgenic tobacco. The substrate specificity of transgenic plants was the same as substrate specificity of BphC enzyme.


Assuntos
Compostos de Bifenilo/metabolismo , Catecóis/metabolismo , Dioxigenases/metabolismo , Poluição Ambiental/prevenção & controle , Bifenilos Policlorados/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biomassa , Compostos de Bifenilo/análise , Catecóis/análise , Dioxigenases/genética , Plantas Geneticamente Modificadas , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Proteínas Recombinantes de Fusão , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Especificidade por Substrato , /genética
9.
ScientificWorldJournal ; 2013: 872026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222753

RESUMO

Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed.


Assuntos
Arthrobacter/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Clorobenzoatos/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Pseudomonas/metabolismo , Arthrobacter/isolamento & purificação , Pseudomonas/isolamento & purificação
10.
Mutat Res ; 657(2): 140-5, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18835364

RESUMO

Tobacco seedlings (Nicotiana tabacum var. xanthi) were treated for 24 h with mono-(2- and 3-CBA), di-(2,5- and 3,4-CBA), and tri-(2,4,6- and 2,3,5-CBA)-chlorobenzoic acids (CBAs) and with the mixture of polychlorinated biphenyls--Delor 103, or cultivated for 1 or 2 weeks in soil polluted with the CBAs. DNA damage in nuclei of leaves and roots was evaluated by the comet assay. A significant increase in DNA damage was observed only at concentrations of CBAs that caused withering of leaves or had lethal effects within 2-4 weeks after the treatments. As the application of CBAs did not induce somatic mutations, the induced DNA migration is probably caused by necrotic DNA fragmentation and not by DNA damage resulting in genetic alteration. In contrast, the application of the monofunctional alkylating agent ethyl methanesulphonate as a positive control resulted in a dose-response increase of DNA damage and an increase of somatic mutations. Thus, the EMS-produced DNA migration is probably associated with genotoxin-induced DNA fragmentation. The data demonstrate that the comet assay in plants should be conducted together with toxicity studies to distinguish between necrotic and genotoxin-induced DNA fragmentation. The content of 2,5-CBA in tobacco seedlings was measured by reverse-phase high pressure liquid chromatography.


Assuntos
Clorobenzoatos/toxicidade , Mutagênicos/toxicidade , Bifenilos Policlorados/toxicidade , Poluentes do Solo/toxicidade , Dano ao DNA , DNA de Plantas/efeitos dos fármacos , DNA de Plantas/genética , Relação Dose-Resposta a Droga , Mutação , Folhas de Planta/efeitos dos fármacos , Bifenilos Policlorados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...